Partial Oxidation of Butane to Syngas over Nickel Supported Catalysts Modified by Alkali Metal Oxide and Rare-Earth Metal Oxide

Sheng Lin LIU*, Long Ya XU, Su Juan XIE, Qing Xia WANG

Group 804, Dalian Institute of Chemical Physics, CAS, P. O. Box 110, Dalian 116023

Abstract: The partial oxidation of butane (POB) to syngas over nickel supported catalysts was first investigated with a flow-reactor, TG and UVRRS. The NiO/ γ -Al₂O₃ is the most suitable for the POB among NiO/ γ -Al₂O₃, NiO/MgO and NiO/SiO₂. And the reaction performance of the NiO/ γ -Al₂O₃ shows little difference from those of the nickel supported catalysts modified by alkali metal oxide and rare-earth metal oxide. However, modification with Li₂O and La₂O₃ can suppress carbon-deposition of the NiO/ γ -Al₂O₃, which contains graphite-like species during the POB reaction.

Keywords: Partial oxidation of butane, syngas, carbon-deposition, nickel supported catalysts.

There are abundant supplies of mixture gases containing CH₄, C₂H₆, C₃H₈ and C₄H₁₀, *etc.* from FCC (Fluidized Catalytic Cracking) tail gas, refinery gas, *etc.* Commonly, the mixture gases are primarily combusted to carbon dioxide because the complete separation of CH₄, C₂H₆, C₃H₈ and C₄H₁₀, respectively, from the mixture gases may not be economical. Provided that syngas (CO+H₂) could be produced from the mixture gases over nickel supported catalysts with high selectivity and conversion, it can be directly obtained from the mixture gases from FCC tail gas, refinery gas, *etc.* This may lead to better utilization of the light fractions from FCC tail gas and refineries, *etc.* Previously, we reported partial oxidation of methane, ethane and propane to syngas (POM, POE, POP) over the nickel-based catalysts modified by alkali metal oxide and rare earth metal oxide, and pointed out that ABNiO/ γ -Al₂O₃(A = Li, Na, K; B = La, Sm, Ce, Y) were good reaction catalysts¹⁻⁴. In this letter, the partial oxidation of butane to syngas over the nickel supported catalysts was first reported.

Preparation of the nickel supported catalysts and characterization of catalyst have been described previously¹. Catalysts were tested by flow-reaction in atmospheric pressure fixed-bed microreactor. Products of the reaction were analyzed by Gas Chromatography using a TCD detector. Conversion and selectivity were calculated on the basis of carbon numbers of the feed reacted.

The POM and POE reactions over the nickel supported catalysts were investigated under the high temperatures ranging from 973 to 1123 $K^{1,2,4}$, so we try to carry out the POP and POB reactions at the same high temperatures. The results indicate that, as the

Sheng Lin LIU et al.

temperature ranges from 923 to 1123K, above the catalyst and on the reactor, the gas phase takes place obviously, and there exists a large amount of coke from the thermal splitting decompositions of propane and butane. The coke will block the reactor and cause the reaction not to be in progress after suitable time running. While the reaction temperature is below 873K, the gas phase occurs little. Thus, the reaction performance of POB is studied below 873K.

The effect of temperature on the performance of the LiLaNiO/ γ -Al₂O₃ is examined. The results indicate that butane and oxygen are almost converted completely. When the reaction temperature is subsequently increased from 773 to 873K, the CO and H₂ selectivities increase, while the CH₄ and CO₂ selectivities decrease. Under the constant space velocity by keeping the flow rate of C₄H₁₀ (11.0ml/min) and the total flow rate (95ml/min) of O₂ and Ar constant, the respective flow rates of O₂ and Ar are changed to obtain different O₂/C₄H₁₀ ratios. As the O₂/C₄H₁₀ ratio changes from 2.20 to 3.29, the CO and H₂ selectivities reduce, and the CH₄ and CO₂ selectivities rise. The influence of space velocity on the performance of the LiLaNiO/ γ -Al₂O₃ was also studied. The results indicate that the influence of space velocity is not appreciable, *e.g.*, the LiLaNiO/ γ -Al₂O₃ keeps good reaction performance with a wide range of space velocity, under 873K and O₂/C₄H₁₀/Ar ratio of 2.2/1/5.3.

The reaction performances of partial oxidation of butane to syngas over NiO/ γ -Al₂O₃, NiO/MgO and NiO/SiO₂ are compared. The results are shown in **Table 1**. There are strikingly different performances when MgO or SiO₂ displaces the γ -Al₂O₃ support in the NiO/ γ -Al₂O₃ catalyst. C₄H₁₀, O₂ conversions and H₂ selectivity of the MgO or SiO₂ supported nickel catalyst are much lower than those of the NiO/ γ -Al₂O₃ catalyst. The different behaviour of MgO or SiO₂ may be related with the interaction between nickel and support. Previously, we carried out the POM, POE and POP reactions over the same catalysts^{2,3,5}. The results show that the NiO/ γ -Al₂O₃ is also the most suitable one for the three reactions from the three catalysts, however, the behaviour of the POB reaction is different among those of the POM, POE and POP reaction, and the activated behaviour of butane is not the same as those of methane, ethane, and propane. So it is necessary to study the reaction of partial oxidation of butane to syngas over the nickel-supported catalysts.

 $\label{eq:comparison} \begin{array}{ll} \mbox{Table 1} & \mbox{Comparison of performance of different supported catalysts} \\ & (O_2/C_4H_{10}/Ar = 2.2/1/5.3; \ SV=5.7 \ x \ 10^4 \ h^{-1}; \ T=873K) \end{array}$

Catalyst	$C_{4}H_{10}$	O_2	СО	CH_4	CO_2	H_2	H ₂ /CO
	Conv. (%)	Conv. (%)	Sel. (%)	Sel. (%)	Sel. (%)	Sel. (%)	(ratio)
NiO/γ-Al ₂ O ₃	100	100	41.9	29.4	28.7	83.8	1.3
NiO/MgO	10.0	21.0	24.8	10.5	64.7	26.9	1.1
NiO/SiO ₂	11.0	20.3	47.6	12.8	39.6	22.0	0.5

A series of $ABCO/\gamma$ -Al₂O₃ (A= Li, Na, K; B= La, Sm, Ce, Y; C= Fe, Co, Ni) catalysts were prepared with the same preparation method and condition in order to investigate the action of different components. The results are presented in **Table 2**. There are strikingly different performances when Fe or Co displaced the Ni component

Partial Oxidation of Butane to Syngas over Nickel Supported Catalysts 45

in the LiLaNiO/ γ -Al₂O₃ catalyst. C₄H₁₀, O₂ conversions and CH₄ selectivity of the Fe or Co-containing catalyst is much lower than that of the Ni-containing catalyst. The different behavior of Fe or Co may possibly be attributed to the differences in structure, ability to remove hydrogen, redox ability and the interaction between transition metal and Al₂O₃ support. The nickel is most suitable for the POP reaction according to the results listed in **Table 2**.

The reaction performance of the NiO/ γ -Al₂O₃ shows little difference from those of the catalysts with different alkali metal oxides ALaNiO/ γ -Al₂O₃ (A= Li, Na, K) and rare earth metal oxides LiBNiO/ γ -Al₂O₃ (B=La, Sm, Y, Ce). Butane and oxygen are almost converted completely, the selectivities of CO and H₂, and H₂/CO ratio keep at ~45%, 80-85% and ~ 1.3, respectively. The results indicate that modification with alkali and rare-earth metal oxides does not significantly influence the reaction performance of the POB reaction over the NiO/ γ -Al₂O₃ under these conditions. However, the modification can obviously affect the thermal stability of γ -Al₂O₃ and the sintering of nickel in the NiO/ γ -Al₂O₃ catalyst⁶.

Catalyst	C_4H_{10}	O_2	СО	CH_4	CO ₂	H_2	H ₂ /CO
	Conv.(%)	Conv.(%)	Sel.(%)	Sel.(%)	Sel.(%)	Sel.(%)	(ratio)
NiO/γ-Al ₂ O ₃	100	100	41.9	29.4	28.7	83.8	1.3
LiNiLaO/y-Al ₂ O ₃	100	100	48.4	24.4	27.3	84.4	1.3
LiCoLaO/γ-Al ₂ O ₃	16.8	33.3	44.4	1.0	54.6	77.3	1.3
LiFeLaO/γ-Al ₂ O ₃	32.3	85.0	16.9	1.8	81.3	9.0	0.7
NaNiLaO/γ-Al ₂ O ₃	100	100	45.4	27.1	27.5	83.5	1.3
KNiLaO/γ-Al ₂ O ₃	100	100	45.6	27.0	27.4	85.7	1.3
LiNiCeO/γ-Al ₂ O ₃	100	100	48.4	26.5	25.1	82.1	1.2
LiNiYO/y-Al ₂ O ₃	100	100	46.6	27.3	26.1	80.2	1.3
LiNiSmO/y-Al ₂ O ₃	100	100	49.4	27.4	23.2	80.7	1.2

The addition of Li and La not only can improve the thermal stability of the NiO/γ -Al₂O₃ and prevent the sintering of nickel⁶, but more importantly, the addition of Li and La enhances the ability of carbon-deposition resistance. The deposition of surface carbon over the NiO/Al2O3 catalyst during the POM reaction was undesirable and resulted in the deactivation of the NiO/Al₂O₃⁷. A hydrocarbon with higher C/H ratio favors carbon deposition on the surface of a catalyst in comparison with lower C/H ratio. Therefore, it is reasonable that the amount of carbon-deposition for the POB reaction is more than for the POM reaction over the NiO/Al₂O₃, and carbon- deposition also results in the deactivation of the NiO/Al_2O_3 for the POE reaction. It is well known that the acidity of the catalyst surface favors carbon-deposition, while the basicity of the catalyst surface prevents carbon-deposition. Because the acidity intensity of LiLaNiO/γ-Al₂O₃ is much lower than that of NiO/ γ -Al₂O₃ catalyst⁴, the addition of Li and La should be beneficial to the prevention of carbon-deposition over catalyst surface. The TG results of the samples after the POB reaction for 5h indicate the amount of carbon-deposition over the LiLaNiO/ γ -Al₂O₃ was only 1/2 of that over the NiO/ γ -Al₂O₃ under 873K, $C_4H_{10}/O_2/Ar$ ratio of 1 /1.8 /5.3, and space velocity of 5.0 x 10⁴ h⁻¹. It is shown that the

Sheng Lin LIU et al.

introduction of Li and La can suppress carbon-deposition of the nickel-based catalyst.

In order to determine the carbon-deposition species formed on the catalysts, the samples performed under the same reaction conditions were characterized by UV Resonance Raman Spectra (UVRRS), which has been demonstrated to be a powerful tool for catalysis and surface science studies, with the advantage of avoiding the surface fluorescence which frequently occurs in visible Raman spectra of many catalysts⁸. The samples used for the UVRRS were manipulated in air prior to the analysis. The results show only one band at 1580 cm⁻¹ is present clearly in the spectra, which is close to the characteristic band of graphite⁹ at 1575 cm⁻¹. The results reveal that the carbon-deposition formed on the nickel-based catalysts contains graphite-like species (amorphous forms of carbon may not be detected by UVRRS).

References

- 1. Q. Miao, G. X. Xiong, S. S. Sheng, W. Chu, L. Xu, X. X. Guo, Appl. Catal. A., 1997,154, 17.
- 2. S. L. Liu, G. X. Xiong, W. S. Yang, L. Y. Xu, G. Xiong, C. Li, Catal. Lett., 1999, 63, 167.
- 3. S. L. Liu, L. Y. Xu, S. J. Xie, Q. X. Wang, Appl. Catal. A., (Submitted).
- 4. S. L. Liu, G. X. Xiong, L. Y. Xu, S. S. Sheng, W. S. Sheng, *Chin. Chem. Lett.*, **2000**, *11*(2), 175.
- 5. Q. Miao, in "Study of the oxidative transformation of methane over the nickel-based catalysts modified by alkali metal oxide and rare-earth oxide," Doctoral Dissertation, Dalian, **1995**.
- 6. S. L. Liu, G. X. Xiong, S. S. Sheng, React. Kinet. Catal. Lett., 1999, 68, 243.
- 7. D.Dissanayake, M.P. Rosynek, K.C.C. Kharas, J.H. Lunsford, J. Catal., 1991, 132, 117.
- 8. C, Li, P. C. Stair, Stud. Surf. Sci. Catal., 1996, 101, 881.
- 9. M. Nakamizo, Carbon, 1991, 29, 257.

Received June 15, 2000